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Fig. 1. ( ya )( F’), a quantity proportional to gain, as a function of the dimen-
sions of the vane-loaded helicaf structure.

by a~po and PC(O, respectively, in the expression for the imped-

ance parameter F of an identical helix in free space [2]. This

would lead to

F’= F( a~/ac)l’6

The interaction impedance, which is related

parameter [2], then may be expressed as

K’= K( aJaC)112

(1)

to the impedance

(2)

where K’ represents the interaction impedance of the vane-loaded

helix and K represents the corresponding quantity for an identi-

cal helix in free space. K may be suitably expressed using the

dispersion relation as [2]

[ 1K=~ I1(ya)K1(ya) 1/2
F3 cot $

2 10(ya)KO(ya)
(3)

where a is the mean helix radius, + is the helix pitch angle, 1,,

and K. (n = O,1) are the modified Bessel functions of the first

and the second kinds, respectively, and y is the radial propa-

gation constant of the structure.

III. RESULT AND DISCUSSION

The various structure dimensions shown in Fig. 1 and Table I

are the mean helix radius a, being equal to the sheath helix

radius, the radial coordinate of the tips of the wines b, the radius

of the metal envelope c, and the separation s between the sheath

helix and the dielectric supports, being equal to the helix-wire

radius.

In Table I, the typical optimized vane-loaded (b # c) and

vaneless (b = c) structures are compared with respect to the

characteristic impedance Z( = (L/C)1j2 ) [1] and the interaction

impedance K. It is found (Table I) that the optimized vane-loaded

structure is superior to the optimized vnneless structure with

respect to having a higher value of the interaction impedance

and, hence, the gain and efficiency of the device [2]. Table I also

gives the characteristic impedances of these structures and the

TABLE I

THE CHARACTERISTIC AND INTERACTION IMPEDANCES OF ‘rHE

OPTIMIZED VANE-LOADED STRUCTURI COMPARED WITH TROSE OF

THE OPTIMIZED VANELESS STRUCTURE

Optimised vane-loaded Optimised vaneless Iielix-in-free-
stmcture :+2.50, structure: b=c, s=9; space
s~; (b/a) Opt=l.70 (c/a) Opt=l.25

—--- —.-. ---- ---- ---- ---- ---- ---- ---- -
Iobm) 105.6 62.4 140,6

K(otun) 53.6 73.9 53,2

corresponding results for an identical helix in free space for the

sake of comparison. In Fig. 1, ( ya )( F’ ), a quantity proportional

to the gain of the device, is plotted against the various structural

dimensions, showing qualitatively how the gain of the device

would increase with s, b, and e.

[1]

[2]

[3]
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Conversion Losses in GRAS Schottky-Barrier Diodes

OLDWIG VON ROOS AND KE-LI WANG

Abst?act —The conversion losses of a Schottky-barrier diode have been

calculated for a set of realistic diode parameters. It is found that previous

work overestimated the substrate losses by 30 percent. It is also shown that

a lightly doped epitaxial layer will decrease the barrier capacitance and with

properly designed thickness will avoid any resistance losses due to this

layer. Parasitic losses can thus be reduced substantially.

I. INTRODUCTION

The model of a Schottky-barrier diode we contemplate in the

present work consists of a cylindrical contact of radius a on a

thin cylindrical wafer of n-type semiconductor material possess-

ing a radius b >> a. The semiconductor wafer in turn consists of a

layer of undoped or at least lightly doped GaAs epitaxially grown

on a heavily doped n-type GRAS substrate several roils thick.

Under high-frequency operation, the equivalent circuit of the

structure just described consists of a spreading impedance Z, in

series with a combination of the barrier resistance Rb and the

bamier capacitance c in parallel [1]. The current-voltage char-

acteristic for a small ac signal may then be represented by

l+itiCRb
z=

Rh + Z, i- iuCRh Z,
v. (1)
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It can be shown [1] that the parasitic loss of the device, defined as

the ratio of the total power absorbed to the power available to

the barrier resistance alone, is given by]

L=l+ R,/Rh + u2C2R, Rb (2)

where R, signifies the real part of Z., the spreading impedance.

It is the aim of the designer to keep L as small as possible, which

can obviously be achieved by minimizing R, and C. In the

following, we shall give a re-evaluation of the spreading resis-

tance based on the theory given by Dickens [2], taking due

account of the influence of the scattering frequency and displace-

ment currents on the conductivity [3]. An account of the barrier

capacitance provided by a GaAs epitakial layer will also be given.

II. THE SPREADING RESISTANCE R.

According to the theory developed by Dickens [2], the imped-

ance of current flowing through a small circular disk into a

substrate consisting of a homogeneously doped semiconductor is

given by [2, eq. (62)]

( J:J ‘3)zs=~~%($z+l)-’ 1+

where &l = b/a >>1 is the ratio of the outer radius of the

substrate to the radius of the disk, which in our case constitutes

the Schottky contact, Q is the angular frequency, pO the perme-

ability of free space, and y, the propagation constant, is given by

y = (i@pO)l’2(u + iOfcO)l’2. (4)

In (4), e signifies the relative dielectric constant, c~ the permittiv-

ity of free space, and the conductivity u is given by [3]

Oo
o—

l+ia7
(5)

where 7 is the average time between collisions of the majority

carriers [4]. The connection between UO and ~ is given by the

mobility p via

cro= qpN ~=$ (6)

where N is the carrier density, m* the effective mass, and q the

elementary charge. The model underlying (5) and (6) is a rather

simple one but sufficiently accurate for our purposes.

If we assume for a moment that the absolute value of a y is

very small, then (3) shows that

2, + *ln(b/a)+ =tal-l(b/a) (7)

in this case. The first term on the RHS of (7) is attributed to the

skin effect and the second term to the spreading resistance. It can

be easily shown that (7) is identical with the corresponding

expressions given in [3] and [5]. But the quantity a y is for many

realistic cases far from small, and replacing the exponential in the

integrand of (3) by unity constitutes a serious mistake. With the

definition

ay=z=z1+iz2 (8)

the integral (3) becomes

if.opoa

(

In(b/a) + ~(z)
z,=—

271 z z sin z }
(9)

1There are other losses (for instarrce, losses associated with impedance

mismatch at the RF and IF ports) if the device is used as mixer, We do not

contemplate these additional losses here,

with

~(z) =ci(z)sin(z) -si(z)cos(z) (lo)

where2

J
Zcost —1

ci(z)=c+lnz+ — dt
o t

is the integral cosine and

(ha)

(llb)

the integral sine.

Because of the assumption b/a >>1, we have extended the

integration over the exponential part of the integral (3) to infinity

without loss of accuracy. We recuperate (7) from (9) for small

absolute z since lim~(z) = n/2 and tan – l(b/u) = tr/2 for large

b/a. It is of interest to evaluate Z, in the low- and high-frequency

limit. In the low-frequency limit w + O, we have from (4) and (8)

z = (1+ i)a(apOao/2)1’2 (12)

so that ZI = Zz <<1. Equation (9) reveals then that for o -+ O

()1 + i 2poti 1’2 1
z.=— —

477 Uo
ln(b/a)+—

4avo
(13)

identicaf with the classical result [2]. In the high-frequency limit

u -+ m, we have from (4) and (5) that

z = iu&a/c = iz2.

But for large absolute z ( arg z < n), we also have for

[6, eq. (10)] ~(z)= z-l and therefore (c = 1 in this case)

Z, =~ln(b/a)+ ~e-””/c=~ln(b/a)

(14)

f(z)

(15)

independent of frequency.

For most semiconductor material of interest in this context and

for frequencies v above 100 GHz but below 30 THz, it turns out

that the absolute value of z is less than 2. We assume throughout

a value of the order of 1 pm for the radius of the contact disk. In

this case, ~(z), as well as the trigonometric functions occurring in

the expression for Z,, (9), can be expanded in powers of z and it

is sufficient to go to order 0( Z5). since we are interested only in

the reaf part of Z, according to (2), we will give the result of the

expansion of (9) only for the real part of Z., or the spreading

resistance R$. With the definition

r=(z:+z; )l’2 (16)

we have

–{

R _ tipoa Z2
s- ~ In(b/a) + n~

2!7
-(l-c);

+zlnr–3sin–l(z2/r)
r2 r2

5 T 269
——z2+—z1z2— —

36 45 7200 ‘:Z2

269
+

—Z+*’1z2(zf -’:)21600
}

(17)

valid for r <2. From the defining equations for z, (8) and (4), we

‘C = 0.577216 is Euler’s constant.
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obtain

.2=;@ Ja+/3)

(18a)

(18b)

where

a= (A+/m)l’2 /?= B/(,4 +dm)l’2 (19)

and A and B are in turn given by

a~ ( UOT
A=—————— B=ti ccO– ——————

1 + (.!7T* )1+ NT* “
(20)

Equation (17) represents the spreading resistance of the sub-

strate within the limits indicated (r < 2). This is to be compared

with the usual expression given by previous authors [3], [5] who

retain only the first two terms in the braces of (17), As an

example of the error introduced in this way, let us compute R,
with the following values of the parameters which determine ZI

~d Z2. UO=1C)5 mho ~–1 , c=1O.8, r=10–13 s, a=l pm,

b = 50 pm, and v =12 000 GHz. In this typical case, the absolute

value of z turns out to be r = 0.759, well within the range of the

validity of (17) but certainly not small compared to unity. We

obtain R ~= 17.4 Q. However, the vahte for R, obtained from the

incorrect (7) is R, = 23 Q, an overestimate by 30 percent.

An undepleted epitaxial layer will also contribute to the

spreading resistance [5]. But if the epilayer is judiciously grown

and doped, the depletion layer underneath the Schottky barrier

can be extended to the substrate and the epilayer resistance

avoided (Mott barrier). This idea leads directly to a consideration

of the barrier capacitance,

III. THE BARRIER CAPACITANCE

The width of the depletion layer within an epitaxial layer of

thickness t just underneath a Schottky-barrier contact is given by

(21)

if w < t. Here i!J~ signifies the number density of donors, V~ the

barrier height as seen from the semiconductor, and V is the

applied (forward) voltage. The barrier capacitance C follows

from (21) in a well-known manner [3], [7] and is in turn given by

(22)

V~ is connected to the barrier height proper @~, the discontinuity

at the metal-semiconductor interface, via

Vh= ~b + kTln(ND/NC) (23)

where NC is the density of states of the conduction band. A

heuristic connection between +~ and the band-gap energy E~ is

given by the “two-thirds rule,” i.e. [8],

(24)

To minimize losses, C must be made small aeeording to (2).

This means that for a given contact radius a, the depletion layer

width W must be made large. This can obviously be achieved by

decreasing the dopant concentration ND according to (21). If the

thickness of the epitaxial layer t is larger than the space-charge

layer width W, a contribution to the spreading resistance due to

the undepleted epilayer between the space-charge layer and the

heavily doped substrate will arise. But this contribution to R,

TABLE I
LIST OF PARAMETERVALUESFORTHE DETERMINATIONOFTHE

BARRIER CAPACITANCE

N1
= 1 x 10” Lm-’

NC = 4.7 x 1017 CnI-3

N2 =2x10
18 ~m-3

C = 10.8

‘1
=lum

EG = 1.43 eV

Al
= 0.07’4 eV

will be large because of the low conductivity of the lightly doped

material, If, however, the space-charge layer can be extended into

the substrate, no such resistance contribution arises as far as the

ac current is concerned, since it is supported entirely by displace-

ment currents in the space-charge region.

Suppose, we have a layer of semiconductor 1 possessing a

uniform doping concentration NI, a dielectric constant c1, and

thickness tlgrown on a layer of semiconductor 2 possessing a

doping concentration N2, a dielectric constant e2, and thickness

t2.It can then be shown by solving Poisson’s equation that the

depletion-layer thickness becomes

wff=(l-;)tl+{~ (V,l-v)+:(:-%
(25)

Here, V~l is given by the equation

qvbl = gob + Al (26)

where Al is the energy difference between the quasi-Fermi level

and the conduction band edge of the substrate, a positive quan-

tity for heavily doped degenerate material. Equation (25) is of

course valid only if tl< Weff, otherwise the space-charge layer

would not penetrate the substrate. Since (I = c* = c in our case,

we obtain from (25)

(2<eo

( ))

1/2

Weff = ---#b-v)+ l-’~ 1; . (27)

In order that tl< Weff, the inequality

(28)

must be satisfied. Using the parameter values of Table I, we find

that the voltage across the barrier must be larger than 0.084 V in

order for the inequality (28) to hold. In this case, (27) reveals

that Weff # fl and the barrier capacitance now becomes

C=~~a2= 9.56 X10-5ra2[F]. (29)

Usually, the epilayer is doped more heavily than indicated in

Table I of our example. For NI = 2 X 1017 cm- 3 as reported in the

literature [5], the barrier capacitance becomes an order of magni-

tude larger than the value quoted in (29) with a concomitant
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TABLE II

LIST OF PARAMETERVALUESFOR THE DETERMINATION OF THE

SPREADING RESISTANCE AND PARASITIC LOSSES

OF THE SUBSTRATE

‘o
= 105 A/Vm

T = 10-”,

& = 10.8

Rb = ’200 Q*)

,=3X10-16F

~=lum

b=50~~

*This vafue was determined from the thermionic theory [7] using a

forward bias of V= 0.893 V. At this bias, the inequality (28) is still valid.

T= 300 K.
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Fig. 1 The absolute magnitude r of the propagation constant ay, (4), as a

function of frequency. Parameter values used for the computation are gwen

in Table II. VP M the plasma frequency

larger loss according to (2) at higher frequencies. It is therefore

advantageous to use a less heavily doped epilayer, provided that

the space-charge layer extends into the substrate as discussed

above,

IV. RESULTS

We have calculated the spreading resistance R, as a function

of frequency using either the correct equation (17) or the real part

of (7). The latter expression has been used previously for the

determination of R, [3], [5]. But we have shown that this is only

permissible if the quantity z, (8), is small compared to one.

Typical values for the conductivity and collision frequency

of heavily doped n-type GaAs are rro = 10S rnho m– 1 nnd T =

10-13 s, respectively. These values lead to an electron mobility of

p = 0.26 m2/Vs according to (6), assuming an effective mass of

0.067 electron masses. Using the values quoted here and also

listed in Table II, we have calculated the absolute value r of the

propagation constant z, (12), as a function of frequency above

100 GHz. The results are shown in Fig. 1 for a contact radius of

a = 1 pm. As can be seen, the magnitude of r is certainly far

from being small compared to one. We also notice a sharp dip of

the magnitude of r at a frequency of 16 THz. This resonance

frequency corresponds to the classical plasma frequency and the

minimum of r at that frequency translates into a maximum for

R, at the same frequency. The plasma frequency VP is well

low
I 1 ,
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103 10’ 1$

OH= “P

Fig. 2. The spreading resistance as a function of frequency. Both curves are

computed using the parameter vahres listed in Table II The solid curw is

based on (17) aud the dashed curve represents R, obtained from the real part

of (7).

I

I I
10-2 I 1 1

,.2 103 “; ,.4 “p

GH.

Fig. 3. The parasitic loss L, (2), as a function of frequency, Curve I repre-

sents the loss computed for the model proposed in thrs work Curve 11

represents the loss computed for a conventional model. v~ signifies the

plasma frequency of the epdayer, and rJP the plasma frequency of the

substrate. See text for details.

known to be

‘p= (2~)-1(92~D/’’0m* )1° = (’2fl)-’(fJo/%~)”2 (30)

an expression which yields indeed 16 THz when using the values

for the parameters entering (30) listed in Table II. Fig. 2 shows

the spreading resistance R, as a function of frequency. The solid

curve represents R, as computed with the help of (17) and the

dashed curve represents the real part of (7), i.e., the expression

for R, used by previous authors [3], [5]. Almost throughout the

range of frequencies contemplated, the incorrect spreading resis-

tance, the dashed curve of Fig. 2, is 29 percent larger than the
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TABLE III
LIST OF PARAMETERVALUESFORTHE DETERMINATIONOFTHE

RESISTANCEOFTHEUNDEPLETEDEPILAYER

>

‘o = 12800 A./V~

-13 ~
T = 1.55 x 10

N1
= 2 x 101’ cm-’

C=4X10–15F

correct one, the solid curve of Fig, 2. It is of course true that for

low frequencies (v<100GHz), as well as forvery high frequen-

ties (v >30 THz), the” wrong” expression for R,, (7), merge with

the correct expression(3) as discussed in Section II. However, it

is remarkable that the two expressions, either the real part of (7),

or (17) (valid for r< 2), give the same trend as a function of

frequency, one merely being shifted by an almost constant amount

of some 30 percent upward from the other within the frequency

range of interest (100 GHz < v <30 THz).

With the values as given in Table I, we have also calculated the

loss L, (2), as a function of frequency using the values of R,
from Fig. 2. These are shown in Fig. 3 as curve I. It can be seen

that the resonance at the plasma frequency VP has disappeared in

favor of an abrupt change in slope due to the frequency-depen-

dent term of (2). As the frequency increases above VP, the

resistance R, decreases but not as fast as the square of the

frequency increases. We also see that below 2000 GHz = 2 THz,

the parasitic losses are fairly small for our model.

We now discuss curve II of Fig. 3. Here, we have plotted the

loss L, (2), using a model found in the literature [5]. The epilayer

consists of GRAS doped to N1 = 2 X 1017 cm– 3. Table III lists the

corresponding values for the dc conductivity and collision time

found from (6) and the capacitance of the epilayer as given by

(21) and (22). The ttndepleted epilayer thickness t was assumed

to be t= 0.125 pm [5]. The epilayer reisistivity becomes

(31)

where ZI and Zz are defined by (8) and (18)–(20). The values of

UO and ~ to be used are those of Table III. In order to determine

the loss, (2), I&,i of (30) must be added to the substrate resis-

tance of Fig. 2, and finally the capacitance to be used must be

computed from (21) and (22) with ND = iVl = 2 X 1017 cm– 3, the

dopant concentration of this model [5]. The result is shown by

curve II of Fig. 3. As cart be seen, the parasitic losses are larger

for this model than they are for the case of the lightly doped

epilayer with “punch through” of the space-charge layer as

discussed above. The reason is twofold, At low frequencies (be-

low 2 THz), It,Pi is about as large as R., given the parameter

values of Tables II and III. At high frequencies where Rwi

becomes negligibly small,3 the frequency-dependent term of (2)

dominates and the loss L becomes proportional to C*. Since the

ratio of the capacitances underlying the model of curve II (Fig. 3)

and that of curve I (Fig. 3) is about 13, simply because of the

difference in doping level NI = 2 X 1017 cm-3 for the model

culled from the literature [5] and NI = 5 x1014 cm– 3 for our

3 It can easily be shown from (4), (5), and (8) that ZI - ~– z for high

frequencies and thus RCP, goes to zero in this limit according to (30),

IW 1 J

1

/’‘1
II
II I

101 \
—.— -—_ ___ ———--- “

I
1l’!\

Fig. 4, A comparison of the spreading resistance R. of the substrate (solid

curve) with the resistance of the undepleted epilayer R ~Pl (dashed curve) for

the conventional model adopted in the text.

“punch through” configuration as amply explained in Section

III, we see that at high frequencies (above 10 THz) the difference

between curve II and curve I of Fig. 3 is approximately a

constant 22 dB. The point of inflection at 4600 GHz of curve II is

easily explained when looking at Fig, 4. To clarify, we plotted

both the spreading resistance of the substrate form Fig. 2 on Fig.

4 (solid curve) together with the resistance of the undepleted

epilayer of the conventional model (dashed curve). We see, that

the resistance of the epilayer and that of the substrate are more

or less equal below 2 THz, but the resistance of the epilayer

shows a sharp maximum at v = V$ = 4.7 THz. This resonance is

analogous to the resonance shown in Fig. 2 for the substrate’s

resistance and occurs again at the plasma frequency given by (3o)

but now using the parameter values of Table III for its computa-

tion. Beyond the peak, Repi drops quickly to very small values as

the frequency is increased, and this is the origin of the point of

inflection of curve II of Fig. 3 in the neighborhood of v;.

V. CONCLUSION

We have shown, that the spreading resistance of the substrate

of a Schottky-barrier diode is reduced by some 30 percent from

values quoted in the literature [3], [5] when calculated correctly. A

contribution toward the resistance due to an undepleted epitaxial

layer can be avoided by carefully tailoring the space-charge layer

and at the same time the barrier capacitance can be reduced

appreciably.

Thus, parasitic losses can be reduced by between 1 to 25 dB

from conventional diode structures depending on the frequency.
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