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Fig. 1. (ya)(F’), a quantity proportional to gain, as a function of the dimen-

sions of the vane-loaded helical structure.

by a, p, and pce,, respectively, in the expression for the imped-
ance parameter F of an identical helix in free space [2]. This
would lead to

F'=F(a,/ac)"". (1)

The interaction impedance, which is related to the impedance
parameter [2], then may be expressed as

I(/=I(("‘L/‘3‘c‘)l/2 (2

where K’ represents the interaction impedance of the vane-loaded
helix and K represents the corresponding quantity for an identi-
cal helix in free space. K may be suitably expressed using the
dispersion relation as [2]

_ 1 L (ya) K (va)
2| Iy(ya) Ko(va)

where a is the mean belix radius, ¥ is the helix pitch angle, I,

and K, (n=0,1) are the modified Bessel functions of the first

and the second kinds, respectively, and vy is the radial propa-
gation constant of the structure.

1/2
Ficoty )

III. RESULT AND DISCUSSION

The various structure dimensions shown in Fig. 1 and Table 1
are the mean helix radius a, being equal to the sheath helix
radius, the radial coordinate of the tips of the vanes b, the radius
of the metal envelope ¢, and the seperation s between the sheath
helix and the dielectric supports, being equal to the helix-wire
radius. .

In Table I, the typical optimized vane-loaded (b # ¢) and
vaneless (b =c) structures are compared with respect to the
characteristic impedance Z( = (L/C)“?) [1] and the interaction
impedance K. It is found (Table I) that the optimized vane-loaded
structure is superior to the optimized vaneless structure with
respect to having a higher value of the interaction impedance
and, hence, the gain and efficiency of the device [2]. Table I also
gives the characteristic impedances of these structures and the

TABLEI
THE CHARACTERISTIC AND INTERACTION IMPEDANCES OF THE
OPTIMIZED VANE-LOADED STRUCTURE COMPARED WITH THOSE OF
THE OPTIMIZED VANELESS STRUCTURE

Ta = 1.6; coty = 8

lielix~in~free-
space

Optimised vane-loaded Optimised vaneless
structureich=2,50, structure:bs=c,s=0;
s=03{p/a)opt=1,70 (c/a)opt=1.25

corresponding results for an identical helix in free space for the
sake of comparison. In Fig. 1, (ya)(F’), a quantity proportional
to the gain of the device, is plotted against the various structural
dimensions, showing qualitatively how the gain of the device
would increase with s, b, and c.
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Conversion Losses in GaAs Schottky-Barrier Diodes
OLDWIG VON ROOS anp KE-LI WANG

Abstract —The conversion losses of a Schottky-barrier diode have been
calculated for a set of realistic diode parameters, It is found that previous
work overestimated the substrate losses by 30 percent. It is also shown that
a lightly doped epitaxial layer will decrease the barrier capacitance and with
properly designed thickness will avoid any resistance losses due to this
layer. Parasitic losses can thus be reduced substantially.

I. INTRODUCTION

The model of a Schottky-barrier diode we contemplate in the
present work consists of a cylindrical contact of radius ¢ on a
thin cylindrical wafer of n-type semiconductor material possess-
ing a radius b >> a. The semiconductor wafer in turn consists of a
layer of undoped or at least lightly doped GaAs epitaxially grown
on a heavily doped n-type GaAs substrate several mils thick.
Undeér high-frequency operation, the equivalent circuit of the
structure just described consists of a spreading impedance Z, in
series with a combination of the barrier resistance R, and the
barrier capacitance C in parallel [1]. The current—voltage char-
acteristic for a small ac signal may then be represented by

R, + Z,+iwCR,Z, )
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It can be shown [1] that the parasitic loss of the device, defined as
the ratio of the total power absorbed to the power available to
the barrier resistance alone, is given by’

L=1+R,/R,+ »*C’R,R,

2
where R, signifies the real part of Z_, the spreading impedance.
It is the aim of the designer to keep L as small as possible, which
can obviously be achieved by minimizing R, and C. In the
following, we shall give a re-evaluation of the spreading resis-
tance based on the theory given by Dickens [2], taking due
account of the influence of the scattering frequency and displace-
ment currents on the conductivity [3]. An account of the barrier
capacitance provided by a GaAs epitaxial layer will also be given.

II. THE SPREADING RESISTANCE R,

According to the theory developed by Dickens [2], the imped-
ance of current flowing through a small circular disk into a
substrate consisting of a homogeneously doped semiconductor is
given by [2, eq. (62)]

—avé

sin(ay)g) G)

where & =b/a>1 is the ratio of the outer radius of the
substrate to the radius of the disk, which in our case constitutes
the Schottky contact, w is the angular frequency, u, the perme-
ability of free space, and y, the propagation constant, is given by

(4)

In (4), ¢ signifies the relative dielectric constant, €, the permittiv-

ity of free space, and the conductivity ¢ is given by [3]
%

a .
1+iwT

___i‘*’ﬂo £ ) -1
Z, —-2777[0 gdg(g2+1) 1+

y= (iwp,o)l/z(a + iweco)l/z.

(%)

where 7 is the average time between collisions of the majority
_ carriers [4]. The connection between o, and 7 is given by the
mobility p via
qT
p=— (6)
where N is the carrier density, m* the effective mass, and ¢ the
elementary charge. The model underlying (5) and (6) is a rather
simple one but sufficiently accurate for our purposes.
If we assume for a moment that the absolute value of ay is
very small, then (3) shows that

0 =4qpN

iw

o
In( b +
S In(b/a)

w

o tan}(b/a)

Z — !
2way

. ()
in this case. The first term on the RHS of (7) is attributed to the
skin effect and the second term to the spreading resistance. It can
be easily shown that (7) is identical with the corresponding
expressions given in [3] and [5]. But the quantity ay is for many
realistic cases far from small, and replacing the exponential in the
integrand of (3) by unity constitutes a serious mistake. With the
definition
\ ay=z=z+iz, (8)
the integral (3) becomes
ivpga ( In(b/a z
7, tae (b/e) 1)
T

z zsinz

©)

!There are other losses (for instance, losses associated with impedance
mismatch at the RF and IF ports) if the device is used as mixer. We do not
contemplate these additional losses here.
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with
f(z) =ci(z)sin(z)—si(z)cos(z) (10)
where?
zcost—1
ci(z)=C+Inz +f dt (112)
0 {
is the integral cosine and
7 zsint
si(2)=——+| —dt (11b)
2 o !

the integral sine.

Because of the assumption b/a 1, we have extended the
integration over the exponential part of the integral (3) to infinity
without loss of accuracy. We recuperate (7) from (9) for small
absolute z since lim f(z) = #/2 and tan " (b /a) = 7 /2 for large
b/a. It is of interest to evaluate Z; in the low- and high-frequency
limit. In the low-frequency limit w — 0, we have from (4) and (8)

z=(1+i)a(wpg0 /)" (12)
so that z; = z, < 1. Equation (9) reveals then that for w — 0

1+i] 2pyw
(e 1)
49

identical with the classical result [2]. In the high-frequency limit
w —> o0, we have from (4) and (5) that

12 1
1 +—
) n(b/a) 4ac,

z=iwfea/c=iz,. (14)

But for large absolute z (argz<#), we also have for f(z)
16, eq. (10)] f(z)=2z""! and therefore (¢ =1 in this case)

2

BoC BoC Boc
=—1n(b 4t/ e n(b 15
° 2 n(b/a) wwae 27 n(b/a)  (15)

independent of frequency.

For most semiconductor material of interest in this context and
for frequencies » above 100 GHz but below 30 THz, it turns out
that the absolute value of z is less than 2. We assume throughout
a value of the order of 1 pm for the radius of the contact disk. In
this case, f(z), as well as the trigonometric functions occurring in
the expression for Z_, (9), can be expanded in powers of z and it
is sufficient to go to order 0(z%). Since we are interested only in
the real part of Z, according to (2), we will give the result of the
expansion of (9) only for the real part of Z, or the spreading
resistance R . With the definition

r= (le+222)1/2 (16)
we have

4

[0 a Z2 yAv4
R, =20 {—1n(b/a)+w—1—§—(1—c)—§
ry r r

i 27
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269
——z+ 2
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4——21600.22—&--94—52122(21 —22)

(17)

valid for r < 2. From the defining equations for z, (8) and (4), we

2¢ = 0.577216 is Euler’s constant.
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obtain
2= 5 omo (- B) (18a)
Zzz‘ngﬂo(a’i'ﬁ) (18b)
where

a=(A+VA + B2)"? B=B/(4+VA42+B?)" (19)

and A4 and B are in turn given by
9

o7
=1+o‘>27'2 B=w(€€0—1+w2T2). (20)

Equation (17) represents the spreading resistance of the sub-
strate within the limits indicated (r < 2). This is to be compared
with the usual expression given by previous authors [3], [5] who
retain only the first two terms in the braces of (17). As an
example of the error introduced in this way, let us compute R,
with the following values of the parameters which determine z,
and z,. 6,=10° mho m™!, ¢=108, 7=10""% 5, a=1 pm,
b =350 pm, and » =12 000 GHz. In this typical case, the absotute
value of z turns out to be r = 0.759, well within the range of the
validity of (17) but certainly not small compared to unity. We
obtain R =17.4 Q. However, the value for R obtained from the
incorrect (7) is R, =23 Q, an overestimate by 30 percent.

An undepleted epitaxial layer will also contribute to the
spreading resistance [5]. But if the epilayer is judiciously grown
and doped, the depletion layer underneath the Schottky barrier
can be extended to the substrate and the epilayer resistance
avoided (Mott barrier). This idea leads directly to a consideration
of the barrier capacitance.

A

III. THE BARRIER CAPACITANCE
The width of the depletion layer within an epitaxial layer of
thickness ¢ just underneath a Schottky-barrier contact is given by
2¢ee

W=
qNp

(V,=V) (21)
if W< t. Here N, signifies the number density of donors, ¥, the
barrier height as seen from the semiconductor, and ¥V is the
applied (forward) voltage. The barrier capacitance C follows
from (21) in a well-known manner [3], [7] and is in turn given by

€€,

C=—ma’. 22

T (22)
V, is connected to the barrier height proper ¢,, the discontinuity
at the metal-semiconductor interface, via

V= ¢, + kT In(Np /N,) (23)

where N, is the density of states of the conduction band. A
heuristic connection between ¢, and the band-gap energy E; is
given by the “two-thirds rule,” i.e. [8],
2

b= 3 E;. (24)

To minimize losses, C must be made small according to (2).
This means that for a given contact radius a, the depletion layer
width ¥ must be made large. This can obviously be achieved by
decreasing the dopant concentration N, according to (21). If the
thickness of the epitaxial layer ¢ is larger than the space-charge
layer width W, a contribution to the spreading resistance due to
the undepleted epilayer between the space-charge layer and the
heavily doped substrate will arise. But this contribution to R,

185

TABLE I
L1ST OF PARAMETER VALUES FOR THE DETERMINATION OF THE
BARRIER CAPACITANCE

Nl =1x 1014 z_rn_3

NC = 4.7 x 1017 ::m"3

EG = 1.43 ev

A1 = 0.074 ev

will be large because of the low conductivity of the lightly doped
material. If, however, the space-charge layer can be extended into
the substrate, no such resistance contribution arises as far as the
ac cutrent is concerned, since it is supported entirely by displace-
ment currents in the space-charge region.

Suppose, we have a layer of semiconductor 1 possessing a
uniform doping concentration N;, a dielectric constant ¢;, and
thickness ¢, grown on a layer of semiconductor 2 possessing a
doping concentration N,, a dielectric constant ¢,, and thickness
t,. It can then be shown by solving Poisson’s equation that the
depletion-layer thickness becomes

€€

W= (1-2 )+ [ 2290, —py 22 M
(=3 _—— t _ — ) — —
eff €1 1 qu ( bl ) 51 ¢ N2

Here, V,; is given by the equation
4V =q9, + 4, (26)

where A, is the energy difference between the quasi-Fermi level
and the conduction band edge of the substrate, a positive quan-
tity for heavily doped degenerate material. Equation (25) is of
course valid only if # < W, otherwise the space-charge layer
would not penetrate the substrate. Since ¢, = ¢, =€ in our case,
we obtain from (25)

2e¢, N, v
Wege = E(V/;—V)‘*‘ 1‘@ nlo-

In order that ¢, < W, the inequality

(27)

2¢¢,
(28)
q

must be satisfied. Using the parameter values of Table I, we find
that the voltage across the barrier must be larger than 0.084 V in
order for the unequality (28) to hold. In this case, (27) reveals
that Wi # 1, and the barrier capacitance now becomes

(V,—V) > N?

€€
C=—2na?=956x10"5na*[ F].

1

(29)

Usually, the epilayer is doped more heavily than indicated in
Table 1 of our example. For N, = 2x 10 cm™2 as reported in the
literature [5], the barrier capacitance becomes an order of magni-
tude larger than the value quoted in (29) with a concomitant
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TABLEII
L1ST OF PARAMETER VALUES FOR THE DETERMINATION OF THE
SPREADING RESISTANCE AND PARASITIC LOSSES
OF THE SUBSTRATE

_ 5
9y = 107 A/Vm

¢ = 10.8

R, =200 ¢
-2
c-=3x1010F
a = 1um

b = 50 um

*This value was determined from the thermionic theory [7] using a
forward bias of ¥ = 0.893 V. At this bias, the inequality (28) is still valid.
T =300 K.

Fig. 1 The absolute magnitude r of the propagation constant ay, (4), as a
function of frequency. Parameter values used for the computation are given
in Table II. »p 15 the plasma frequency

larger loss according to (2) at higher frequencies. It is therefore
advantageous to use a less heavily doped epilayer, provided that
the space-charge layer extends into the substrate as discussed
above,

IV. REsuLTS

We have calculated the spreading resistance R as a function
of frequency using either the correct equation (17) or the real part
of (7). The latter expression has been used previously for the
determination of R, [3], [5]. But we have shown that this is only
permissible if the quantity z, (8), is small compared to one.
Typical values for the conductivity and collision frequency
of heavily doped n-type GaAs are o, =10° mho m~' and 7—
10713 s, respectively. These values lead to an electron mobility of
1 =026 m’/Vs according to (6), assuming an effective mass of
0.067 electron masses. Using the values quoted here and also
listed in Table II, we have calculated the absolute value r of the
propagation constant z, (12), as a function of frequency above
100 GHz. The results are shown in Fig. 1 for a contact radius of
a=1 pm. As can be seen, the magnitude of r is certainly far
from being small compared to one. We also notice a sharp dip of
the magnitude of r at a frequency of 16 THz. This resonance
frequency corresponds to the classical plasma frequency and the
minimum of r at that frequency translates into a maximum for
R, at the same frequency. The plasma frequency », is well

s

T T

, :
10? 10 wt o, 0
GHz P

Fig. 2. The spreading resistance as a function of frequency. Both curves are
computed using the parameter values listed in Table II The solid curve is
based on (17) and the dashed curve represents R, obtained from the real part
of (7).

1 I s 11
102 108 vh 104 vy td

Fig. 3. The parasitic loss L, (2), as a function of frequency. Curve 1 repre-
sents the loss computed for the model proposed in thuis work Curve II
represents the loss computed for a conventional model. »p signifies the
plasma frequency of the epilayer, and »p the plasma frequency of the
substrate. See text for details.

known to be

vp = (21) (N fecqm*)” = (2m) Y ay fecqr)* (30)

an expression which yields indeed 16 THz when using the values
for the parameters entering (30) listed in Table II. Fig. 2 shows
the spreading resistance R, as a function of frequency. The solid
curve represents R, as computed with the help of (17) and the
dashed curve represents the real part of (7), ie., the expression
for R, used by previous authors [3], [5]. Almost throughout the
range of frequencies contemplated, the incorrect spreading resis-
tance, the dashed curve of Fig. 2, is 29 percent larger than the
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TABLE III
L1ST OF PARAMETER VALUES FOR THE DETERMINATION OF THE
RESISTANCE OF THE UNDEPLETED EPILAYER

00 = 12800 A/Vm

1= 1.55 x 10703 5

N, = 2% 101 em?

correct one, the solid curve of Fig. 2. It is of course true that for
low frequencies (v <100 GHz), as well as for very high frequen-
cies (v > 30 THz), the “wrong” expression for R, (7), merge with
the correct expression (3) as discussed in Section II. However, it
is remarkable that the two expressions, either the real part of (7),
or (17) (valid for r <2), give the same trend as a function of
frequency, one merely being shifted by an almost constant amount
of some 30 percent upward from the other within the frequency
range of interest (100 GHz < » < 30 THz).

With the values as given in Table I, we have also calculated the
loss L, (2), as a function of frequency using the values of R,
from Fig. 2. These are shown in Fig. 3 as curve L It can be seen
that the resonance at the plasma frequency », has disappeared in
favor of an abrupt change in slope due to the frequency-depen-
dent term of (2). As the frequency increases above vp, the
resistance R, decreases but not as fast as the square of the
frequency increases. We also see that below 2000 GHz =2 THz,
the parasitic losses are fairly small for our model.

We now discuss curve II of Fig, 3. Here, we have plotted the
loss L, (2), using a model found in the literature [5]. The epilayer
consists of GaAs doped to N; = 2X10'7 em™>. Table III lists the
corresponding values for the dc conductivity and collision time
found from (6) and the capacitance of the epilayer as given by
(21) and (22). The undepleted epilayer thickness ¢ was assumed
to be = 0.125 pm [5]. The epilayer reisistivity becomes

22y
(212 + 222)2
where z, and z, are defined by (8) and (18)-(20). The values of
6, and 7 to be used are those of Table III. In order to determine
the loss, (2), R, of (30) must be added to the substrate resis-
tance of Fig, 2, and finally the capacitance to be used must be
computed from (21) and (22) with N, = N, =2x10"7 cm™3, the
dopant concentration of this model [5]. The result is shown by
curve II of Fig. 3. As can be seen, the parasitic losses are larger
for this model than they are for the case of the lightly doped
epilayer with “punch through” of the space-charge layer as
discussed above. The reason is twofold. At low frequencies (be-
low 2 THz), R, is about as large as R, given the parameter
values of Tables II and III. At high frequencies where R,
becomes negligibly small,® the frequency-dependent term of (2)
dominates and the loss L becomes proportional to C2, Since the
ratio of the capacitances underlying the model of curve IT (Fig. 3)
and that of curve I (Fig. 3) is about 13, simply because of the
difference in doping level N, =2x10Y cm™3 for the model
culled from the literature [5] and N, =5X%10" cm™3? for our

(31)

2
Repi = ; twpg

314 can easily be shown from (4), (5), and (8) that z;~w™? for high

frequencies and thus R, goes to zero in this limit according to (36).

A ) . PR
10 100 1000

10000

Fig. 4. A comparison of the spreading resistance R of the substrate (solid
curve) with the resistance of the undepleted epilayer R, (dashed curve) for
the conventional model adopted in the text.

ep1
“punch through” configuration as amply explained in Section
III, we see that at high frequencies (above 10 THz) the difference
between curve II and curve I of Fig. 3 is approximately a
constant 22 dB. The point of inflection at 4600 GHz of curve II is
casily explained when looking at Fig. 4. To clarify, we plotted
both the spreading resistance of the substrate form Fig. 2 on Fig.
4 (solid curve) together with the resistance of the undepleted
epilayer of the conventional model (dashed curve). We see, that
the resistance of the epilayer and that of the substrate are more
or less equal below 2 THz, but the resistance of the epilayer
shows a sharp maximum at » =»} = 4.7 THz. This resonance is
analogous to the resonance shown in Fig. 2 for the substrate’s
resistance and occurs again at the plasma frequency given by (30)
but now using the parameter values of Table III for its computa-
tion. Beyond the peak, R.; drops quickly to very small values as
the frequency is increased, and this is the origin of the point of
inflection of curve II of Fig. 3 in the neighborhood of »}.

V. CONCLUSION

We have shown, that the spreading resistance of the substrate
of a Schottky-barrier diode is reduced by some 30 percent from
values quoted in the literature [3], [5] when calculated correctly. A
contribution toward the resistance due to an undepleted epitaxjal
layer can be avoided by carefully tailoring the space-charge layer
and at the same time the barrier capacitance can be reduced
appreciably.

Thus, parasitic losses can be reduced by between 1 to 25 dB
from conventional diode structures depending on the frequency.
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